MC4X24V15A Motor Controller Upgrade

I still want to test more with rev 1.0 of MC4X24V15A, but I am also planning an upgrade. I initially drew a rev 1.1 using 78M12, but I will replace LMR14206 with TPS54x60 and AMS1117 with SPX3819. That will increase range to 60V which basically means 48V. I do have the challenge that I also want 12V and I need 12V on the Gate Drivers. The only solution I know of is by bypassing the DC/DC if input voltage is below 14V.

The supercap stays, that part of the design was really succesfully, but I need to consider if I need 5V as well for the Hall Sensors etc. In which case I need 4 voltages on the controller.

I will change to the new SWD to save some space + this should be better in this case as it won’t be in the way.

I will also change the connectors to JST Micro as I see little purpose in the larger ones.

I would like to find smaller diodes for the Gate Driver chargers.

I also consider dropping that cap add-on and get the caps directly on the board. Use 1000uF 16/35V in series etc.

INA210 will be replaced with INA194.

I need to test that Hall Sensor circuit and consider changing it.

Temp1 and Temp2 needs to be changed.

Resolver port can be removed.

And then comes the question about the MOSFET’s. IRF7862 is great, but some of the new ones are just in a different scale. 3.3mOhm versus 0.65mOhm is a huge difference as the later will allow much, much higher currents. But, if I make the footprint for SOP Advance a SOP-8 will also fit onto that. The only difference is the PAD on SOP Advance. I can even stick SOP Advance on SOP-8 with some care – I just do not get the advantage of the PAD’s heat dissipation. But, I do need to remove a place-through underneath the IRF7862. With this I can interchange MOSFET’s. New product name will be MC4X60V15A. I don’t plan on changing the 15A limit. MOSFET’s will take far more, but PCB lanes will start burning.

Returning a bit to MC3P60V50A I realize that I have done a few mistakes. Some of the smaller capacitors needs to be 60V+ and I need to put the main capacitor somewhere. All in all I might have to use a few more mm in width which is fine.

I am still waiting on PCB’s for MC3X3A. As for the micro one using DRV10983 I am actually considering ditching that one. It run’s the motor, but I am not impressed. After a while it heats up and misbehave. I tried a L293 just to compare and was more impressed by how easy it was to use this to run the same 3-phase motor. I liked DRV10983 over DRV8313, but – well – I will code it’s I2C interface and see what I can achieve.

Leave a Reply